Phase Structure of Driven Quantum Systems
نویسندگان
چکیده
منابع مشابه
Dissipation-driven quantum phase transition in superconductor-graphene systems.
We show that a system of Josephson junctions coupled via low-resistance tunneling contacts to graphene substrate(s) may effectively operate as a current switching device. The effect is based on the dissipation-driven superconductor-to-insulator quantum phase transition, which happens due to the interplay of the Josephson effect and Coulomb blockade. Coupling to a graphene substrate with gapless...
متن کاملPressure-driven Quantum Phase Transition
The zero-temperature quantum phase transition (QPT) is driven by quantum fluctuations, in contrast to the more familiar finite temperature transitions driven by thermal fluctuations. This paper demonstrates our work on two kinds of QPTs in two different materials, respectively. The first work focuses on the pressure-driven antiferromagnetic QPT in pure chromium which is a model system for study...
متن کاملQuasi-Periodically Driven Quantum Systems
Floquet theory provides rigorous foundations for the theory of periodically driven quantum systems. In the case of non-periodic driving, however, the situation is not so well understood. Here, we provide a critical review of the theoretical framework developed for quasi-periodically driven quantum systems. Although the theoretical footing is still under development, we argue that quasiperiodica...
متن کاملRecurrences in driven quantum systems.
We consider an initially bound quantum particle subject to an external time-dependent field. When the external field is large, the particle shows a tendency to repeatedly return to its initial state, irrespective of whether the frequency of the field is sufficient for escape from the well. These recurrences, which are absent in a classical calculation, arise from the system evolving primarily l...
متن کاملTopological characterization of periodically driven quantum systems
Topological properties of physical systems can lead to robust behaviors that are insensitive to microscopic details. Such topologically robust phenomena are not limited to static systems but can also appear in driven quantum systems. In this paper, we show that the Floquet operators of periodically driven systems can be divided into topologically distinct homotopy classes and give a simple phys...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2016
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.116.250401